Donor‐acceptor (D‐A) polymers are promising materials for organic electrochemical transistors (OECTs), as they minimize detrimental faradaic side‐reactions during OECT operation, yet their steady‐state OECT performance still lags far behind their all‐donor counterparts. Here, we report three D‐A polymers based on the diketopyrrolopyrrole unit that afford OECT performances similar to those of all‐donor polymers, hence representing a significant improvement to the previously developed D‐A copolymers. In addition to improved OECT performance, DFT simulations of the polymers and their respective hole polarons also revealed a positive correlation between hole polaron delocalization and steady‐state OECT performance, providing new insights into the design of OECT materials. More importantly, we demonstrate how polaron delocalization can be tuned directly at the molecular level by selection of the building blocks comprising the polymers’ conjugated backbone, thus paving the way for the development of even higher performing OECT polymers.
"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."
King Abdullah bin Abdulaziz Al Saud, 1924 – 2015
Thuwal 23955-6900, Kingdom of Saudi Arabia
© King Abdullah University of Science and Technology. All rights reserved