Current Research

How to design mixed conductors for bioelectronics?

The majority of the devices developed in the field of organic bioelectronics rely on efficient and balanced mixed ionic and electronic conduction in the organic material. For instance, the performance of an organic electrochemical transistor (OECT) depends on how easily the electronic charge carriers move along the film, how keen the material is to uptake (de)dopant ions, and eventually how efficiently these ions affect the output current.​

Sensing in the biological world - towards self-powered biosensors

Detecting disease biomarkers or analytes and quantifying minute changes in their concentrations in bodily fluids, in the living tissue or at single cell level is one of the biggest endeavors of the biomedical engineers. We tackle this challenge by integrating biofunctionalized mixed conductors in customized electronic devices so that they have high sensitivity, specificity and speed.

Making 3D Scaffolds Functional

​Conducting polymers can be processed to exhibit a variety of form factors such as porous structures or fibrous films. Once these architectures are integrated with cell culture, a 3D living bioelectronic device can be developed. Modifying the scaffolds, our work aims to design 3D sensing/actuating platforms that have an intimate interface with cells. ​​


"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

Quick links

© King Abdullah University of Science and Technology. All rights reserved