Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices

by Prem D. Nayak, Busra Dereli, David Ohayon, Shofarul Wustoni, Tania C. Hidalgo Castillo, Victor Druet, Yazhou Wang, Adel Hama, Iain McCulloch, Luigi Cavallo, Sahika Inal
Year:2024 DOI: https://doi.org/10.1021/acscentsci.4c00654

Abstract

Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level. Despite empirical observations suggesting a correlation between deep LUMO levels, low ORR, and enhanced electrochemical cycling stability in water, this relationship lacks robust evidence. In this work, we delve into the electrochemical reactions of n-type polymeric mixed conductors with varying LUMO levels and assess the impact of ORR on charge storage performance and organic electrochemical transistor (OECT) operation. Our results reveal a limited correlation between LUMO levels and ORR currents, as well as the electrochemical operational stability of the films. While ORR currents minimally contribute to OECT channel currents under fixed biasing conditions, n-type films self-discharge rapidly at floating potentials in a capacitor-like configuration. The density functional theory analysis, complemented by X-ray photoelectron spectroscopy, underscores the critical role of backbone chemistry in controlling O2-related degradation pathways and device performance losses. These findings highlight the persistent challenge posed by ORR in n-type semiconductor design and advocate for shifting the focus toward exploring chemical moieties with limited O2 interactions to enhance operational stability and performance at n-type film/water interfaces.

Keywords

Oxygen reduction reaction Organic mixed ionic-electronic conductors Organic electrochemical transistor (OECT)
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

Quick links

© King Abdullah University of Science and Technology. All rights reserved